Canadian consumers continue to be concerned with reducing the amount of sugar in their diet. Low sugar content is the third most influential consideration for Canadians when making food choices. Zero and low-calorie sweeteners seem to offer the perfect solution: the sweetness of sugar with a lower calorie count. But what are the choices for Canadian consumers and which of the many options available is the right one for a particular individual?

The introduction of new products, new research findings and ever-changing regulations can pose a challenge for health professionals trying to help their clients make informed choices about sweeteners. Knowing the facts on the science, safety and current labeling requirements for zero and low-calorie sweeteners can make this task somewhat easier.

Broadly speaking, zero and low calorie sweeteners approved for use in Canada may fall into one of four categories: those used in foods, beverages and tabletop sweeteners; natural sweeteners used in natural health products; sweeteners classified as sugar alcohols; and sweeteners used in tabletop sweeteners but not in foods or beverages.
Zero calorie sweeteners used in foods, beverages and tabletop sweeteners

Background Facts

Acesulfame potassium (Ace-K), approved for use in Canada in 1988, is 200 times sweeter than sugar. Ace-K is not metabolized and is eliminated in the urine unchanged, meaning it is essentially a zero-calorie sweetener.

Aspartame, 180 times sweeter than sugar, has been available in Canada since 1981. Aspartame contains two amino acids – aspartic acid and the methyl ester of phenylalanine, both of which are found naturally in many foods, including meat, fruit and vegetables. Although amino acids provide four calories per gram, the amount of aspartame used as a sweetener is so small that it contributes a nutritionally insignificant amount of calories. Aspartame is therefore considered a non-nutritive sweetener. It is used in a wide variety of products that do not require heating.

Neotame is 8,000 times sweeter than sugar that was introduced in 2007. Chemically related to aspartame, neotame is composed of the amino acids aspartic acid and phenylalanine. It is more heat stable than aspartame and is used in very small amounts because it is 30–60 times sweeter than aspartame.

Sucralose approved in 1992, is 600 times sweeter than table sugar. Sucralose is made from sugar by replacing three hydroxyl groups in sucrose with chlorine. The body does not recognize sucralose as carbohydrate, and it is neither digested nor metabolized. Sucralose is heat stable, which enables its use in baked goods in addition to a variety of other foods and beverages.

Safety

Cumulative evidence has shown that non-nutritive sweeteners are a safe and effective way to replace sugars in the diet. There is strong evidence that these sweeteners are safe for people, including those with diabetes, when consumed in amounts that fall within the acceptable daily intake (ADI). A typical diet with a moderate intake of common foods would not exceed the ADI. Studies have also shown that non-nutritive sweeteners do not affect blood glucose levels. Experts have found no adverse health effects with regard to the use of acesulfame potassium, aspartame, neotame or sucralose, with one minor exception: aspartame is contraindicated for people who suffer the rare genetic disorder known as phenylketonuria (PKU).

Additionally, in 2006, the European Food Safety Authority evaluated a long-term study on the carcinogenicity of aspartame and concluded that, based on the current data available, there is no reason to further review the safety of aspartame. Health Canada agreed with these findings and supports the safety of Aspartame.

Labelling and Regulatory Requirements

Ace-K, aspartame, neotame and sucralose are approved in Canada for use as food additives. The Canadian Food and Drug Regulations (Division 16, Table IX) prescribe their terms of use, including the types of foods to which they may be added and the maximum amount permitted. The label of a food or beverage that contains any of these sweeteners must mention the sweetener(s) on the front panel. The product must also have a Nutrition Facts Table and an Ingredient List where the named sweetener content is expressed in milligrams per serving. In the case of aspartame, a statement that aspartame contains phenylalanine is grouped together with the ingredient list.

When these substances are sold as tabletop sweeteners, a statement grouped with the ingredient list must state the sweetness per serving compared to the amount of sugar that would be needed for an equivalent degree of sweetness.

Background Facts

Rebaudioside A (Reb-A, PureVia™ all natural sweetener) is a natural, purified extract derived from the leaves of the stevia plant. Native to South America, stevia leaves contain naturally sweet components that are 200-300 times sweeter than sugar. Stevia has been used for centuries to sweeten foods and can be used as a sweetener, herb and remedy. It has been used commercially as a sweetener in Asia for more than 30 years. Health Canada has approved stevia extracts for use in natural health products (NHPs) like vitamin-enhanced waters and herbal products. Although not absorbed in the human small intestine, Reb-A is broken down by bacteria into steviol, which may be absorbed, metabolized by the liver and excreted in the urine. PepsiCo uses the PureVia™ trademark to identify our Reb-A ingredient.

Safety

Studies have shown Reb-A to be a safe sugar alternative for use in foods and beverages. Research in people with diabetes and those with hypertension has revealed no adverse affects. Stevia-based sweeteners are approved for use in many countries including the United States, Japan, Australia and Brazil. In Canada, Health Canada permits the use of stevia and its extracts as non-medicinal (sweetener) and medicinal ingredients in natural health products, based on a review of international regulation and the clinical evidence for safety and efficacy. In 2008, the World Health Organization’s Joint Expert Committee on Food Additives completed a multi-year review of the available scientific data on high purity stevia compounds, concluding that they are safe for use as general-purpose sweeteners. In addition, the U.S. Food and Drug Administration (FDA) had no objection to expert panel conclusions that Reb-A is Generally Recognized as Safe (GRAS) for use as a general-purpose sweetener.

Labelling and Regulatory Requirements

Products containing Reb-A are regulated as natural health products, and Reb-A can be added as a non-medicinal sweetening agent. Natural health products have standard labelling requirements including the quantity of each medicinal ingredient, a list of non-medicinal ingredients and mention of recommended conditions of use such as purpose and dosage.

Background Facts

Sugar alcohols as low-calorie sweeteners

Sugar alcohols are less sweet than sugar and provide less energy. Sugar alcohols are neither sugars nor alcohols, and do not contain ethanol. They are naturally present in many foods such as berries, fruit and vegetables and are also commercially produced from sucrose, glucose and starch. In the body, sugar alcohols are incompletely absorbed and are fermented by colonic bacteria. For this reason, they contribute fewer calories than sugars. Sugar alcohols are useful sugar substitutes for people with diabetes because they produce a lower glycemic response compared to sugar.

Safety

The use of sugar alcohols as sweetening agents is safe. It is important to note that because they are not fully absorbed, excessive intake of sugar alcohols may cause abdominal cramps and diarrhea, especially in children. Intakes above 10 grams per day may produce a laxative effect.

Labelling and Regulatory Requirements

Specific sugar alcohols are approved for use as food additives: lactitol, maltitol, mannitol, sorbitol, xylitol, erythritol and isomalt. When a product contains a sugar alcohol, the sugar alcohol must be stated in the ingredients list and must also be mentioned on the Nutrition Facts Table under carbohydrates.

Background Facts

Saccharin is 300-500 times sweeter than sugar. Discovered in 1897, it was one of the first high-intensity sweeteners. Saccharine is not broken down by the body and is excreted in the urine unchanged.

Cyclamate is 30-50 times sweeter than sugar. Studies raised concerns that cyclamate could be toxic to some people who could metabolize cyclamate to cyclohexylanine. As a result, it is not permitted as a food ingredient, but is available as a common tabletop sweetener, and should be used only under the advice of a physician.
Zero and Low-calorie Sweeteners found in PepsiCo Canada Beverages

Acesulfame-Potassium or Ace-K
- **Sweetness**: 200 times sweeter than sucrose
- **ADI**: 15 mg/kg body weight
- **Examples**:
 - 32 mg/355 mL
 - 51 mg/473 mL
 - 11 mg/250 mL

Aspartame
- **Sweetness**: 180 times sweeter than sucrose
- **ADI**: 40 mg/kg body weight
- **Examples**: 124 mg/355 mL, 41 mg/355 mL, 64 mg/335 mL, 41 mg/355 mL

Sucralose
- **Sweetness**: 600 times sweeter than sucrose
- **ADI**: 9 mg/kg body weight
- **Examples**: 281 mg/473 mL, 44 mg/355 mL, 22 mg/250 mL, 27 mg/250 mL

Sugar alcohol - Erythritol
- **Sweetness**: 3/4 less sweet than sucrose
- **NO ADI - Tolerated at daily dose of 1.0 g/kg body weight**
- **Examples**: 15 g/591 mL, 17 g/591 mL
- **Note**: The body does not absorb erythritol the way it absorbs sugar, which is why they contribute fewer calories.

Reb-A
- **Sweetness**: 200 times sweeter than sucrose
- **ADI**: 12 mg/kg body weight
- **Examples**: 124 mg/591 mL, 172 mg/591 mL

ADI = Acceptable Daily Intake is established by Health Canada based on extensive scientific evidence. ADI indicates the amount of a food additive that can be safely consumed on a daily basis over a person’s lifetime without risk.